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The n-beam dynamical theory of high-energy electrons is currently used in transmission (Laue case) for 
accurate determination of the Fourier components of the crystal potential. The same theory is expected 
to provide information about the surface potential when used to interpret diffraction patterns in reflec- 
tion at glancing incidence (Bragg case). Some peculiar aspects are elucidated in detail, insofar that 
they are different from the transmission case, particularly the boundary conditions. Inelastic scattering 
effects are introduced by means of a complex potential. Changes of the Fourier components of the 
potential near the surface are considered, and a model has been developed which incorporates these 
changes into the theory. A slice treatment developed in the frame of Bethe's theory is presented. 

1. Introduction 

Diffraction of electrons from a flat surface of a single 
crystal has been widely used in the last few years for 
surface investigations. When the energy of the primary 
beam is of the order of a few keV (high-energy electron 
diffraction, HEED) the actual penetration of the 
electron beam is much higher than in low-energy 
electron diffraction (LEED), but owing to the small 
grazing angle (of the order of 1 to 3°), it is to be ex- 
pected that a HEED diffraction pattern will reflect the 
properties of the first few atomic layers. This is con- 
firmed by the streaky character of the diffraction spots 
observed at different stages during heat treatment in 
the case, for instance, of tungsten (Siegel & Menadue, 
1967). 

The essential tool for understanding a HEED pattern 
from a quantitative point of view is of course the n- 
beam dynamical theory such as that developed for the 
transmission case (Laue case)(Hirsch,lHowie, Nicholson, 
Pashley & Whelan, 1965).* In transmission experiments 

* Work supported by the Air Force Office of Scientific 
Research. 

t Present address: Department of Physics, Purdue University, 
Lafayette, Indiana 47907, U.S.A. 

* Diffraction theory is an alternative but equivalent approach 
to band theory, as pointed out by Stern, Perry & Boudreaux 
(1969). E vs. k plots are replaced here by the dispersion hyper- 
surface. 

the n-beam dynamical theory has been successfully used 
for the accurate determination of structure factors 
(Cowley, 1969), in the frame of a scattering theory 
based upon the first Born approximation. Within the 
limits of such an approximation it is permissible to 
express the Fourier components of the crystal potential 
in terms of the scattering cross section for each atom 
within the crystal cell, a kinematic approximation 
being made within each cell. Such an approximation, to 
be sure, is not permissible in LEED. 

It is expected, in principle, that the same theory 
applied to the Bragg case should be able to give in- 
formation on the surface charge density via the atomic 
potential. 

Although the basic formalism of the n-beam dy- 
namical theory for the Bragg case is essentially the 
same as for the Laue case, there are some differences 
in the practical developments of the calculations, 
especially as far as the boundary conditions are con- 
cerned. 

This paper will give a description of how the n-beam 
dynamical theory for electrons has been applied to the 
Bragg case of diffraction. It will be shown in detail 
how the original theory developed by Bethe (1928) has 
been used for this purpose. 

A model will be described in which possible changes 
of the crystal inner potential can be taken into account 
in the frame of such a theory. Rocking curves (reflec- 
tivity vs. angle of incidence) have been computed in 
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some particular cases, and their comparison with 
available experimental results will be discussed in the 
next paper (Colella & Menadue, 1972). 

2. General theory 

It is assumed that the surface of discontinuity between 
vacuum and crystal is plane, with infinite lateral 
extent, characterized by a normal unit vector n pointing 
inwards. The crystal is assumed to be semi-infinite, 
with the origin of coordinates on the surface. 

We will consider the case in which a limited number 
m > l  of diffracted beams are appreciably excited 
within the crystal. They will be labelled H~, H z . . .  Hm 
( m = n - 1 ) *  where the Hj's are the nodes which lie on 
or are very close to the Ewald sphere. No distinction 
will be made in what follows between Laue and Bragg 
beams. 

In the frame of the quantum mechanical formulation 
of electron diffraction in crystals as developed origin- 
ally by Bethe (1928), the electron field is described in 
terms of Bloch waves: 

vCrY~t(r) = C o exp (2hi I~o- r )+  Cnl exp (2zci I~n,. r) 

.-1- . . .  -3v CHm exp (2zci ~H m . r) 

where the amplitudes Cn~ are the solutions of the fol- 
lowing linear system of simultaneous homogeneous 
equations (see, Hirsch et al., 1965) 

(KZ-fl2)Co + I" O-H, CH~ + . . .  + VO--HmCHm = 0  I 

VHI-°C°q-(K2--/~2Hx)CHIqI- "'"-{- VHI-HmCHm=O I (1) 
VHm_oC 0.3(- VHm_H1CHI "~ . . .  + ( K 2 - - f l 2 m ) C H m : O  

where K is the magnitude of the electron wave-vector 
in the crystal corrected for the change of wavelength 
due to the mean inner potential V0, Vn, is the Fourier 
component of the crystal potential p~rtinent to the 
reciprocal-lattice node Hj,I" fl0 is the magnitude of 
the wave-vector for that particular plane wave, within 
the crystal, which has the same tangential component 
as the external incident beam k0. In addition 

flHj= I I~.jl = II~0+Bnjl 

where B~j is a reciprocal-lattice vector. The system (I) 
will have a non-trivial solution only if the determinant 
is zero. This condition involves an algebraic equation 
for rio, whose roots are the allowed eigenvalues. As 
the tangential component of I~0 is fixed by the boundary 
conditions, the normal component 70 can be chosen 
as an eigenvalue. From the definition of K it follows 

* The symbol Hj will sometimes include the origin of the 
reciprocal space, which is associated with the incident beam. 

1" V0 and VH~ are assumed to be complex, in order to take 
into account inelastic scattering effects (Yoshioka, 1957). 

that: K2-flzn,=Fzn, -y2ni+2meVo/h 2 where m and e 
are mass and charge f o r  electron respectively, h is 
Planck's constant, FHj=Iknj.  nl,+ + kl, j is the Hj-dif- 
fracted vacuum wave, and vn/= (PzJ.. n). In the Bragg 
case of diffraction, at glancing angle, F , j  and I~.jl can 
be appreciably different, as opposed to the Laue case. 
It is not allowed, therefore, to use the approximation 
r . , ~  ly.jl (Hirsch et al., 1965) which would enable to 
transform the secular equation for ~'0 into an algebraic 
equation of order n. The 2n eigenvalues y* must be 
retained, giving rise to 2n independent solutions C~. 

• . 1 

( i= 1,2, 3 , . . .  2n). In the approximation of an infimtely 
thick absorbing crystal, however, only n Bloch waves 
will contribute significantly to the total wave field 
inside the crystal. These are the Bloch waves whose 
amplitudes decrease downwards in the crystal, as it 
will be shown later. 

The total electron wave field inside the crystal can 
be written: 

2n H m 
~fryst(r)= ~ W' ~_,H i Cini exp (2zci I~n,. r) (2) 

1 0 

where the V*'s give the actual strength of the various 
Bloch waves and are determined by the boundary con- 
ditions• 

3. Determination of the eigenvalues 

The secular equation for the normal component of the 
electron momentum is of the form: 

Qo- ~2 Vo-nl . . . .  VO-Hm 

Vn,-0 Qnl-y21 Vn,- nm = 0  (3) 
, . , . . . , . . . . . .  . . . . . . . . .  , . , . . .  

V.m_O V . _ . ,  "" Q . m - r ~ m  

where Q,  = F2n, + 2me Vo/h z and Yltj =)'0 + Bnj. n .  
t J 

In matrix notation the equation (3) can be written 

Ivy -  Br0 + Q = 0  (4) 

where B is a diagonal matrix with B~=0 and B j =  
-2(Bnj. n)= -2Bnj.~, I is the n-order identity matrix 
and 

Qo Vo-nl . . . . .  Vo_n,,, 
vn,_o Qn,-B~, . , , .  Vn,-nm 

V.m-o Vnm- . ,  " Q . m - - B  2 Hm,tl 

(5) 

It can be easily shown (Faddeeva, 1959) that the 2n 
roots of the 2n-order matrix polynomial (4) are given 
by the solutions of the first order matrix polynomial 

FHi=¢~--(kHjtang) 2 where k= 1/2 is the magnitude of 
the wave-vector for the vacuum waves and ku tang is the tangen- 
tial component of the Hi-diffracted vacuum beam. kH~ ang= 
k0tang+BH tang. In some cases FH, is imaginary, which cor- 
responds t6 the circumstance of a'n internal total reflection 
for the H.-diffracted beam. In such a situation kn~ does not 
exist except m close proximity to the surface (within a few 
~ngstr6ms). 
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A-170 = 0, where A is a 2n x 2n matrix given by 

B -Q] 
A =  I 0 

and 0 is the n-order null matrix. The eigenvalues can 
now be determined by means of standard methods 
for which computer programs are available. 

4. Boundary conditions 

For each eigenvalue 7~ a solution C/~1 can be deter- 
mined from (1). Only the ratios between the various 
Cm's  are defined, however, not their absolute values. 

The actual strengths of the various Bloch waves are 
given by the constants ~ [equation (2)] which are deter- 
mined by the boundary conditions. In order to write 
down the proper boundary conditions for the Bragg 
case, we will consider a crystal slab of finite thickness 
to, and take the limiting form of the system of linear 
equations involving N~ as to goes to infinity. The crystal 
slab, of infinite lateral extent, will divide the vacuum 
space into two regions, an 'upper' region, where the 
incident beam and the Bragg diffracted beams are 
travelling, and a 'lower' region, where only the trans- 
mitted beam (i.e. the incident beam after transmission 
through the crystal slab) and the Laue-diffracted beams 
can exist.* There are two parallel discountinuity sur- 
faces which will produce mirror reflection of each 
plane wave. In both vacuum regions, therefore, for 
each active node H~., we will consider, in general, two 
vacuum waves k/~ and kn~ .symmetric to the crystal 
surface. The Fourier expansion of the vacuum waves 
in the upper region will be of the form 

. i v - t m  

upper 
~//vac ( r ) :  exp (2r~ik0.r )+ ~ l j  X1l i 

0 

x exp [2re i (k~7g-n Fnj) .  r] 

where the first term represents the incident beam (of 
unit amplitude), XH~ are the (unknown) amplitudes of 
the waves leaving the crystal, k~. "g is the tan_~ential 
component of kHj on the crystal st~rface. 

The physical meaning of the plane waves grouped 
under the summation sign is as follows. The plane 
wave with Hj = 0 is the specular reflected beam. When 
Hj denotes a Bragg beam, Xnj  is the amplitude of the 
Bragg-diffracted beam Hj. When Hj denotes a Laue 
beam, Xn~ is the amplitude of a specular beam reflected 
by the bottom surface.* In the lower region 

Hm 
~/lower(r ~ ~ 

vae \ - ] - -  ~ H  s q)H l exp[2rci(k}~'g+nFMj) r]  (8 )  
0 

* The distinction between Laue and Bragg beams is not 
clearly defined at glancing angle when the n-beam interaction 
is strong. However we will retain this distinction only on an 
intuitive basis, for the sake of convenience, as though we were 
dealing with a situation of a large angle of incidence. 

where the ~0,j's are the (unknown) amplitudes of the 
waves leaving the bottom surface. For the Bragg-dif- 
fracted beams, these waves can be viewed as those 

(6) reflected within the crystal from the top surface. 
The continuity requirements imposed on the electron 

wave function and on its normal derivative give the 
boundary conditions on the upper and lower surface. 
There is a total of 4n unknowns (Xnj, q~1~j, g~, where 
Hj = 0 , / /1 , / /2 . . .  Hm; i=  1,2 . . . .  2n) and 4n linear 
equations. By suitable linear combinations, however, 
it is possible to eliminate 2n unknowns (the Xnj's and 
the ~Hj's) and 2n equations. The following equations 
are obtained (Lamla, 1938): 

2n 

C ~ u/~ 
1 

6a,= 2F0 for H j = 0  (9) 

finj=0 in all other cases 
and 

2n 
C i ~ i ~,~ 0 =  ~ ,  ~,, ( F ~ j -  7~,) exp (2re i 7~'s to) • (9') 

1 

These are 2n equations which determine the 2n un- 
knowns ~u ~. The X~j's can be subsequently calculated 
from the eliminated equations (see §3 of Colella & 
Menadu.e, 1972). 

Let us now assume that the eigenvalues have been 
ordered so that their imaginary parts are in decreasing 
order. Each of the last n equations (9') can be divided 
by exp (2rci Bnj,n) 

2n 

0 =  ~ , C ~ , ( F H , - 7 ~ , ) e x p ( 2 ~ i T ~ t o ) ~ , ' .  (10) 
l 

The imaginary part of 7~ is related to absorption. For 
reasonable values of to (1 or 2 mm) the real parts of the 
exponential factors in (10) have magnitudes differing 
in increasing order, by several orders of magnitude. 

(7) Cramer's rule can be applied to express the ~u~'s as ratios 
of determinants. When these determinants are decom- 
posed into partial products, consideration of the leading 
terms will show at once that it is possible to set 
~,n+1=~,.,+2 . . . .  = ~ 2 n = 0  and solve only the first n 
equations for the first n unknowns. 

In the secular equation (3), the off-diagonal terms 
are smaller than the terms Qnj. On the other hand, 
the imaginary parts of all the QH.'s are the imaginary 

• . I 

parts of the mner potential and therefore are all the 
same. These two circumstances can explain why it is 
to be expected that each eigenvalue 7~ can be coupled 
with another one 9~ with approximately the same 
imaginary part, of different sign. The actual calcula- 
tions have always confirmed this expectation. 

The procedure described above, which leads to the 
elimination of the last n unknowns, is therefore equiv- 
alent to neglecting the Bloch waves whose amplitudes 
increase downwards into the crystal. These Bloch 
waves always exist in a non absorbing crystal. They 
can be interpreted as due to internal reflection on the 
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bottom surface of the crystal, and are absent when the 
crystal is much thicker than the absorption length of 
the radiation, as in our case. 

Once the ~/'s are known, the electron field in the 
crystal is completely determined. The boandary con- 
ditions on the upper surface of the crystal give the 
proper expressions for the amplitudes of the diffracted 
vacuum waves, as will be described in detail in the 
next paper (Colella & Menadue, 1972). 

5. Change of the inner potential near the surface 

The treatment given in the previous paragraphs assumes 
that the crystal is semi-infinite, and whose properties 
can be described as periodic functions of the primitive 
crystal translations defining the lattice in real space. 
The Fourier components involved are assumed to be 
the same throughout the crystal. 

On the other hand, it is expected that HEED pat- 
terns at glancing incidence will sample the first few atomic 
layers, whose properties can be appreciably different 
from the bulk. Changes of the mean inner potential V0 
have been investigated both theoretically and experi- 
mentally (Pinsker, 1953). It is expected that the other 

2n 1 1 1 n 0 0 0 

N' C~, exp (2re i 7~,zl)-  ~ ,  N' C~t, exp (2zt i 7~, zl) 0 = ~ i  
1 1 

as shown by computations and experiments (see Colella 
& Menadue, 1972). The assumption of a uniform 
structure throughout the crystal brings on a consider- 
able simplification in this problem. 

We will not consider for the moment reconstructed 
surfaces. This question will be discussed in the next 
paper (Colella & Menadue, 1972). 

The crystal is divided into an arbitrary number k 
of slices parallel to the surface, of different thicknesses 
(in general), 6, tz... tk. In each slice the n-beam dif- 
fraction problem can be solved as in the case of the 
infinite crystal, with the appropriate values for the 
VHj's. Each slice has therefore its own system of Bloch 
waves. The system of the reciprocal-lattice vectors BH~ 
corresponding to the excited nodes is the same in every 
slice, and so is the tangential component I 1 ~ =  p~""'+ 
B~2 ~. In each slice there are 2n Bloch waves, whose 
amplitudes ~u ~ are determined by the boundary con- 
ditions obtained by matching the wave function and 
its normal derivative on the lower and on the upper 
surface (§4). When the bulk is labelled as 0 and the k 
slices are numbered in increasing order from the top 
of the bulk upwards, the following system of linear 
equations is obtained :* 

2n 1 1 1 I 2n 0 0 0 0 

0= ~ ,  Y~, ~" Cln, exp (2re i y~ ,z l ) -  ~ ,  y~, ~' C~,exp (2n i ?~, zl) 
1 1 

(1 la) 

2n r+ l  r-I-1 rq-1 2n r r r 

0= ~, ~u' C~, exp(2niT~, z,+x)- ~, ~' C~, exp (2n i y~iz,+l) 
1 1 

2n r+ l  r+ l  r+ l  r+l  2n r r r • 

0= ~ ,  y~, ~u' C~,exp(2rciT~,z,+l)- ~ , ~ ,  ~" Cb, exp(2zti?~, z,+l) 
1 1 

(11b) 

• o , .  . . . .  . . . . . . . . . . . o .  . . . .  o . ° .  . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2n k k k 

1 (l lc)  

n~=O,H, n2,...,nm 

Fourier components of the potential, V,j, will be 
similarly affected. 

Changes in the lattice constants are also to be ex- 
pected, which would entail a change of structure near 
the surface. Such changes, however, would not amount 
to more than a few per cent (Park & Farnsworth, 1964). 
They should not produce, therefore, any significant 
effect on the rocking curves whose widths are appreci- 
able fractions (~0.075) of the whole diffraction angle, 

where ~ is 2F0 when H~ = 0 and zero otherwise. 

* In order  to determine the electron wave field in each slice, 
the bounda ry  condi t ions  must  be applied s imul taneously  o n  
both  surfaces of  the slice. This prevents one f rom using a 
'sequential '  procedure (Hirsch et  al . ,  1965, ch. 12). In other  
words, the ampli tudes of  the Bloch waves in each slice do n o t  
depend only on the preceding slices, but  also on those which 
follow. The ~,'s must  therefore be self-consistent and  a r e  
determined s imultaneously t h roughou t  the crystal. 
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Equations ( l la)  are referred to the interface be- 
tween the bulk and the first slice, equations (llb) are 
referred to the interface between the rth and the (r+ 
1)th slice, and the last group of equations (1 lc) concern 
the interface between the kth slice and vacuum. 

The indexes on top of the symbols indicate the 
particular slice to which they are referred and zr= 
t k + t k - ~ + . . .  +tr is the total thickness between the 
top surface of the crystal and the interface where the 
boundary conditions are applied. There is a total of 
2nk+n equations and unknowns. The 2n amplitudes 
gd will be used to build up the total electron wave field 
in the last slice, and the vacuum diffracted amplitudes 
will be calculated in the same way as for the uniform 
crystal (Colella & Menadue, 1972). 

6. Discussion 

The dynamical theory of electron diffraction as devel- 
oped by Bethe (1928) is based upon a triply periodic 
expansion of the crystal potential in reciprocal space. 
The validity of such expansion in a crystal plate 
whose thickness is of the order of a few gmgstr~Sms 
is a matter of discussion. 

Takagi (1969) put forward a dynamical theory of 
electron diffraction for distorted crystals, where the 
amplitudes of the Bloch waves (gi) vary with position 
in the crystal, and are given by a system of first order 
linear differential equations, provided that these 
amplitudes are almost constant along the distance of 
the order of few lattice constants. One of the computa- 
tional procedures to solve such a system consists of 
dividing the crystal in slices and integrating analyti- 
cally within each slice, by matching the solutions at 
each interface between two adjacent slices. This proce- 
dure, which is equivalent to that described in § 5, has 
been employed in a two-beam case of X-ray diffraction 
where dynamical theory was applied to a crystal ir- 
radiated with e particles (Burgeat & Colella, 1969). 

A strict justification of the procedure described above 
would require an accurate knowledge on the way the 
Fourier components of the potential change with 
depth near the crystal surface. Nevertheless, it is worth- 
while to perform some calculations using this model 
with reasonable assumptions concerning V0 and Vus, 
and to observe how the computed diffraction profiles 
are affected. These calculations will be discussed in 
the next paper (Colella & Menadue, 1972). 

7. Conclusions 

The dynamical theory of electron diffraction originally 
developed by Bethe (1928) has been applied to the 

Bragg case of diffraction, in the general case in which 
n(>2) strong beams are excited, either towards or 
away from the entrance surface. The general solution 
of the dispersion equations, without the usual approx- 
imations valid in the transmission case, gives rise to 
2n Bloch waves. Of these only n survive in the semi- 
infinite crystal, those which are exponentially damped 
inwards. The boundary conditions on the top surface 
allow the calculation of the absolute amplitudes of the 
various Bloch waves. A slice treatment, based on the 
present theory, has been attempted, in order to take 
into account possible changes of the inner potential 
near the surface. Some computational details have been 
elucidated, while actual calculations and comparison 
with experimental results are described by Colella & 
Menadue (1972). 

The author is indebted to Professor B. W. Batter- 
man, for pointing out the interest for this work, and 
also for a number of fruitful discussions. His thanks 
are also due to Dr I. Galligani of C. C. R. Euratom, 
Ispra, Italy, who gave useful suggestions for the 
numerical computation of the eigenvalues. This work 
was made possible through a grant from the Air Force 
Office of Scientific Research (AF-AFOSR-1652-69) 
and was aided by the support facilities of the Materials 
Science Center at Cornell University. 
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